wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the slopes of the tangent and the normal to the following curves at the indicted points:

(i) y=x3 at x=4
(ii) y=x at x=9
(iii) y = x3 − x at x = 2
(iv) y = 2x2 + 3 sin x at x = 0
(v) x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2
(vi) x = a cos3 θ, y = a sin3 θ at θ = π/4
(vii) x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2
(viii) y = (sin 2x + cot x + 2)2 at x = π/2
(ix) x2 + 3y + y2 = 5 at (1, 1)
(x) xy = 6 at (1, 6)

Open in App
Solution

i y=x3=x32dydx=32x12=32xWhen x=4, y=x3=64=8Now,Slope of the tangent=dydx4, 8=324=3Slope of the normal=-1dydx4, 8=-13

ii y=x=x12dydx=12x-12=12xWhen x=9, y=x=9=3Now,Slope of the tangent=dydx9, 3=129=16Slope of the normal=-1dydx9, 3=-116=-6

iii y=x3-xdydx=3x2-1When x=2, y=x3-x=23-2=6Now,Slope of the tangent=dydx2, 6=322-1=11Slope of the normal=-1dydx2, 6=-111

iv y=2x2+3 sin xdydx=4x+3 cos xWhen x=0, y=2x2+3 sin x=202+3 sin 0=0Now,Slope of the tangent=dydx0, 0=40+ 3 cos 0=3Slope of the normal=-1dydx0, 0=-13


v x=aθ-sin θdxdθ=a1-cos θ y=a1+cos θ dydθ=a-sin θ dydx=dydθdxdθ=a-sin θa1-cos θ=-2 sin θ2 cos θ22 sin2θ2=-cot θ2Now,Slope of the tangent=dydxθ=-π2=-cot -π22=-cot -π4=1Slope of the normal=-1dydxθ=-π2=-11=-1

vi x=a cos3 θdxdθ=-3a cos2 θ sin θy=a sin3 θ dydθ=3a sin2 θ cos θ dydx=dydθdxdθ=3a sin2 θ cos θ-3a cos2 θ sin θ=-tan θNow,Slope of the tangent=dydxθ=π4=-tan π4=-1Slope of the normal=-1dydxθ=π4=-1-1=1


vii x=aθ-sin θdxdθ=a1-cos θ y=a1-cos θ dydθ=asin θ dydx=dydθdxdθ=asin θa1-cos θ=2 sin θ2 cos θ22 sin2θ2=cot θ2Now,Slope of the tangent=dydxθ=π2=cot π22=cot π4=1Slope of the normal=-1dydxθ=π2=-11=-1

viii y=sin 2x+cot x+22dydx=2 sin 2x+cot x+2 2cos 2x-cosec2xNow,Slope of the tangent=dydxx=π2=2 sin 2π2+cot π2+2 2cos 2π2-cosec2 π2=2 0+0+2 -2-1=-12Slope of the normal=-1dydxx=π2=-1-12=112

ix x2+3y+y2=5On differentiating both sides w.r.t. x, we get2x+3dydx+2y dydx=0dydx3+2y=-2xdydx=-2x3+2yNow,Slope of the tangent=dydx1, 1=-2x3+2y=-23+2=-25Slope of the normal=-1dydx1, 1=-1-25=52

x xy=6On differentiating both sides w.r.t. x, we getxdydx+y=0xdydx=-ydydx=-yxNow,Slope of the tangent=dydx1, 6=-yx=-61=-6Slope of the normal=-1dydx1, 6=-1-6=16

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon