1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sin(A+B)Sin(A-B)
Find the smal...
Question
Find the smallest and the largest values of
tan
−
1
(
1
−
x
1
+
x
)
,
0
≤
x
≤
1
.
Open in App
Solution
We have to find the smallest and largest value of
tan
−
1
(
1
−
x
1
+
x
)
for
0
≤
x
≤
1
We know
0
≤
x
≤
1
⟹
0
≥
−
x
≥
−
1
⟹
1
−
1
≤
1
−
x
≤
0
+
1
⟹
0
≤
1
−
x
≤
1
------ (i)
Similarly,
0
≤
x
≤
1
⟹
1
≤
1
+
x
≤
2
------ (ii)
Divide(1) by (ii)
0
≤
1
−
x
1
+
x
≤
1
2
0
≤
tan
−
1
1
−
x
1
+
x
≤
0.463
r
a
d
i
a
n
Therefore, smallest value is
0
and the largest value is
0.463
r
a
d
i
a
n
Suggest Corrections
0
Similar questions
Q.
The smallest and the largest values of
tan
−
1
(
1
−
x
1
+
x
)
,
0
≤
x
≤
1
are.
Q.
For
tan
−
1
(
1
−
x
1
+
x
)
,
0
≤
x
≤
1
.
What is the sum of the smallest and the largest values of function.
Q.
Find the value of x, If
tan
−
1
(
1
−
x
1
+
x
)
=
1
2
tan
−
1
x
,
x
>
0
Q.
Find the value of x, if
tan
−
1
(
1
−
x
1
+
x
)
=
1
2
tan
−
1
x
,
x
>
0
.