Find the smallest positive integer n, for which (1+i1−i)n=1.
Open in App
Solution
(1+i1−i)n=1⇒(1+i1−i,1+i1+i)n=1⇒(1+2i+i21−i2)⇒(1+2i−11−(−1))n=1⇒(2i2)n=1⇒rn=1 Now, we know that i=i,i2=−1,i3=−i and i4=1. Hence, the smallest positive integral value of n =4.