Find the smallest positive integer value of n for which (1+i)n(1−n)n−2 is a real number.
Let z=(1+i)n(1−n)n−2=(1+i)n(1−i)n(1−i)2=(1+i1−i)n×(1−i)2=in(1+i2−2×1×i) (∵ 1+i1−i=i, using problem 10)=in(1−1−2i)=−2i×in=−2in+1∴ For n=1z=−2i1+1=−2i2=2, which is a real number
∴ The smallest positive integer value of n is 1.