The correct option is A x=5π12, y=π6
Given, x−y=π4 ...(i)
and cotx+coty=2 ....(ii)
From(ii), sin(x+y)=2sinx.siny
=cos(x−y)−cos(x+y)
=cosπ4−cos(x+y)
⇒sin(x+y)+cos(x+y)=cosπ4=1√2
⇒1√2sin(x+y)+1√2cos(x+y)=12
⇒cos(x+y−π4)=cosπ3
⇒x+y−π4=2nπ±π3
⇒x+y=2nπ±π3+±π4 ...(iii)
from n=0,x+y=7π12 (since x,y>0) ...(iv)
From (i) and (iv), x=5π12,y=π6
Hence, least positive values of x and y are 5π12 and π6 respectively.