The correct option is D (1,−1)
Given,
4y−3x=−7 …(i)
and 3x−2y=5
⇒3x=5+2y …(ii)
Step 1: Find the value of y
Substituting 3x=5+2y in (i), we get
Equation (i) → 4y−(3x)=−7
4y−(5+2y)=−7
⇒4y−5−2y=−7⇒2y=−7+5=−2⇒y=−1
Step 2: Now, Find the value of x
Substitute y=−1 in equation (ii)
Equation (ii) → 3x=5+2y
3x=5+2(−1)
⇒3x=5−2=3⇒x=1
∴x=1,y=−1
∴ Required solution for the given pair of equations is (1,−1)