The correct option is C y=12(ex−e−x)
d2ydx2=y
Multiply 2(dydx) both sides,
2dydxd2ydxx=2ydydx
ddx(dydx)2=ddx(y2)
Integrating both sides,
(dydx)2=y2+C21
dydx=√y2+C21
∫dy√y2+C21=∫dx
ln[y+√y2+C21]=x+C2
It passes through (0,0)
⇒ log[C1] = [C2]
So, ln[y+√y2+C21]=x+logC1
⇒ ln⎡⎢
⎢⎣y+√y2+C21C1⎤⎥
⎥⎦=x ... (i)
It passes through (ln2,3/4)
ln⎡⎢
⎢
⎢
⎢⎣34+√916+C21C1⎤⎥
⎥
⎥
⎥⎦=ln2
34+√916+C21=2C1
√C21+916=2C1−3/4
Square both sides
C21+916=4C21+916−3C1
3C21−3C1=0
C1=0,1
C1=0 is not possible
C1=1
Hence, by (i)
y+√y2+1=ex
√y2+1=ex−y
Square both sides,
y2+1=e2x+y2−2exy
1=e2x−2exy
2exy=e2x−1
y=12(ex−e−x)
Alternative Solution:
By options we can obtain that the curve y=12(ex−e−x) is passing through (0,0) & (ln2,3/4)