Differentiation of Inverse Trigonometric Functions
Find the solu...
Question
Find the solution of differential equation dydx=(siny+ex)(lny−xcosy) is
A
y((lny)−1)=ex+xsiny+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
lny=xsiny+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y((lny)+1)=ex−xsiny+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x(lny)=ex−xsiny+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay((lny)−1)=ex+xsiny+c dydx=(siny+ex)(lny−xcosy)⇒lnydy−xcosydy=sinydx+exdx Integrating both side ⇒∫lnydy−∫xcosydy=∫sinydx+∫exdx ⇒ylny−y=ex+∫d(xsiny)+c ⇒y((lny)−1)=ex+xsiny+c