The correct option is B 5(3y−6x)−12log(20x+15y+22)=k
Given differential equation
dydx=8x+6y+124x+3y+2 ....(1)
Substitute 4x+3y=v
⇒4+3dydx=dvdx
⇒dydx=13(dvdx−4)
So, equation (1) becomes
13(dvdx−4)=2v+12v+2
dvdx−4=6v+36v+2
⇒v+210v+44dv=dx
⇒10v+2010v+44dv=10dx
(1−2410v+44)dv=10dx.
(1−12(5v+22)dv=10dx.
Integrating both sides, we get
v−125log(5v+22)=10x+k
or 4x+3y−125log(20x+15y+22)=10x+k
or 5(3y−6x)−12log(20x+15y+22)=c