The correct option is B xy[1+(logxy)2]=x22+C
dydx+yx=1(1+logx+logy)2
xdy+ydx=xdy(1+logxy)2=dxy
or [1+log(xy)]2d(xy)=xdy
Put xy=t and integrating
∫1(1+logt)2dt=∫xdx
or t(1+logt)2−∫t2(1+logt)tdt=x22+c
Now ∫(1+logt)dt=t+[tlogt−t]=tlogt
Thus solution is,
t(1+logt)2−2(tlogt)=x22+C
or t[1+(logt)2+2logt−2logt]=x22+C
or xy[1+(logxy)2]=x22+C