The correct option is B sin−1√x2+y2a=tan−1yx+c
We know that xdx+ydy=12d(x2+y2) and xdy−ydxx2=d(yx)
The given equation can be written as , 12d(x2+y2)√a2−(x2+y2)=(xdy−ydx)1√x2+y2
or 12d(x2+y2)√x2+y2√a2−(x2+y2)=xdy−ydxx2(1+y2/x2)=d(y/x)(1+y2/x2)
Put x2+y2=t2 for L.H.S.and y/x=z
for R.H.S
⇒12.2tdtt√a2−t2=11+z2(dz)
Integrating we get,
sin−1(ta)=tan−1z+c
sin−1√x2+y2a=tan−1yx+c