Find the solution of (3tanx+4coty−7)sin2ydx−(4tanx+7coty−5)cos2xdy=0.
A
3tan2x2−7tanx+7cot2y2−5coty+4(cotytanx)=c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8tan2x2−7tanx+7cot2y2−5coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3tan2x2+7tanx+7cot2y2−5coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8tan2x2+7tanx+7cot2y2−5coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A3tan2x2−7tanx+7cot2y2−5coty+4(cotytanx)=c Given (3tanx+4coty−7)sin2ydx−(4tanx+7coty−5)cos2xdy=0 Dividing throughout by sin2ycos2x, we get
and coty=v⇒−cosec2ydy=dv for third integral ∴3∫udu−7tanx−7∫vdv−5coty+4∫(cotysec2xdx−tanxcosec2y)dy=0 Since, differentiation of cotytanx=cotysec2dx−tanxcosec2y 3tan2x2−7tanx+7cot2y2−5coty+4(cotytanx)=c