wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Find the solution of (3tanx+4coty−7)sin2ydx −(4tanx+7coty−5)cos2xdy=0.

A
3tan2x27tanx+7cot2y25coty+4(cotytanx)=c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8tan2x27tanx+7cot2y25coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3tan2x2+7tanx+7cot2y25coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8tan2x2+7tanx+7cot2y25coty+4(cotytanx)=c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 3tan2x27tanx+7cot2y25coty+4(cotytanx)=c
Given (3tanx+4coty7)sin2ydx(4tanx+7coty5)cos2xdy=0
Dividing throughout by sin2ycos2x, we get

3tanxsec2xdx7sec2dx7cotycosec2ydy+5cosec2ydy+4(cotysec2xdxtanxcosec2y)dy=0

Integrating on both sides

3tanxsec2xdx7sec2dx7cotycosec2ydy+5cosec2ydy
+4(cotysec2xdxtanxcosec2y)dy=0

Put tanx=usec2xdx=du for first integral

and coty=vcosec2ydy=dv for third integral
3udu7tanx7vdv5coty+4(cotysec2xdxtanxcosec2y)dy=0
Since, differentiation of cotytanx=cotysec2dxtanxcosec2y
3tan2x27tanx+7cot2y25coty+4(cotytanx)=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon