The correct option is A 4y+λ=2a√3tan−1(3x+4y−5)√32a
(3x+4y−5)2dydx=a2
Let 3x+4y−5=v
3+4dydx=dvdx
⇒dydx=14(dvdx−3)
Substituting these values in given differential equation
v2[dvdx−3]=4a2
⇒dvdx=4a2+3v2v2
⇒v24a2+3v2dv=dx
⇒v2v2+43a2dv=3dx
Integrating both sides,
∫⎛⎜
⎜
⎜⎝1−43a2v2+43a2⎞⎟
⎟
⎟⎠dv=3x+C
⇒v−2a√3tan−1(√3v2a)=3x+C
⇒4y−5=2a√3tan−1(√3(3x+4y−5)2a)+C
⇒4y+λ=2a√3tan−1(√3(3x+4y−5)2a) where λ=−5−C