The correct option is A (b−a)log{(x+y)2−ab}=2(x−y)+k.
Given (x+y−ax+y−b)dydx=x+y+ax+y+b. ....(1)
Put x+y=v
⇒1+dydx=dvdx
So, eqn (1) becomes
∴dvdx−1=(v+a)(v−b)(v−a)(v+b)
dvdx=(v+a)(v−b)(v−a)(v+b)+1
dvdx=2(v2−ab)v2+(b−a)v−ab.
∴v2−ab+(b−a)vv2−abdv=2dx
⇒(1+b−a2.2vv2−ab)dv=2dx.
Integrating, we get
v+b−a2log(v2−ab)=2x+c
(b−a)log{(x+y)2−ab}=2(x−y)+k.