Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
⎧⎪
⎪⎨⎪
⎪⎩2(1+tanx+y2)⎫⎪
⎪⎬⎪
⎪⎭=x+c. .
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
⎧⎪
⎪⎨⎪
⎪⎩−2(1−tanx+y2)⎫⎪
⎪⎬⎪
⎪⎭=x+c. .
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
⎧⎪
⎪⎨⎪
⎪⎩2(1−tanx+y2)⎫⎪
⎪⎬⎪
⎪⎭=x+c. .
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A⎧⎪
⎪⎨⎪
⎪⎩−2(1+tanx+y2)⎫⎪
⎪⎬⎪
⎪⎭=x+c. . dydx=sin(x+y) put x+y=v⇒dydx=dvdx−1 ∴dvdx=1+sinv=cos2v2+sin2v2+2sinv2cosv2 ⇒dv(cosv2+sinv2)2=dx or sec2v2(1+tanv2)2dv=dx Integrating we get, ⎧⎪
⎪⎨⎪
⎪⎩−2(1+tanv2)⎫⎪
⎪⎬⎪
⎪⎭=x+c.