Find the solution of xcosyx(ydx+xdy)=ysinyx(xdy−ydx)
A
xy=ksecxy
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xy2=ksecyx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2y=ksecyx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xy=ksecyx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dxy=ksecyx Given, xcosyx(ydx+xdy)=ysinyx(xdy−ydx) ydx+xdy=yxtanyx(xdy−ydx) Dividing both sides by xy ydx+xdyxy=tanyx.xdy−ydxx2 or d(xy)xy=tanyxd(yx) Integrate both sides logxy=logsecyx+logk ∴xy=ksecyx