wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the solution of the differential equation:
(1+y2)+(xetan1y)dydx=0

Open in App
Solution

Given,

(1+y2)+(xetan1y)dydx=0

(1+y2)=(etan1yx)dydx

11+y2=1etan1yxdxdy

etan1y1+y2x1+y2=dxdy

P=11+y2,Q=etan1y1+y2

x×I.F=Q×I.F×dy

I.F=ePdx=e11+y2dx=etan1y

x×etan1y=etan1y1+y2etan1ydy

substitute tan1y=t

x×et=et×etdt

x×et=e2tdt

x×et=e2t2+c

x=et2+cet

x=etan1y2+cetan1y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon