[3x2y2+xysin(my)]dx+[2x3y−x2sin(ny)]dy=0
⇒μ(x,y)dx+N(x,y)dy=0
dfdy=dNdx
dfdx=μ(x,y)
⇒f(x,y)=∫μ(x,y)dx+h(y)
⇒∫3x2y2dx+∫cos(x,y)dx−∫xysin(xy)dx+h(y)⇒x3y2+sin(xy)y+xcos(yx)−sin(xy)y+h(y)⇒x3y2+x.cos(yx)+h(y)⇒dfdy=x3.2y−x2cos(xy)+dh(y)2=N(x,y)
⇒dh(y)dy=0→h(y)= constant =c
⇒f(x,y)=c
⇒x3y2+xcos(xy)=c