The correct option is D x=103, y=13
x−4y=2---(1)
x+2y=4---(2)
Using formula for cross multiplication method:
x(b1c2−b2c1)=y(c1a2−a1c2)=−1(a1b2−a2b1)
So, from equation (1) and (2) we can write the value of a,b and c.
x−4×4−2×2=y2×1−1×4=−11×2−1×(−4)
x−16−4=y2−4=−12+4
x−20=y−2=−16
x−20=−16
6x=20
x=103
y−2=−16
6y=2
y=13
Therefore, x=103, y=13