The correct option is B (−4,3)⋃(8,∞)
log1/4(log6(x2+xx+4))>0
log1/4(log6(x2+xx+4))>log1/4(1)
log6(x2+xx+4)>1
log6(x2+xx+4)>log6(6)
x2+xx+4>6
x2+xx+4−6>0
x2+x−6x−24x+4>0
x2−5x−24x+4>0
(x−8)(x+3)x+4>0
Therefore
(x−8)(x+3)>0
x>8 and x>−3 therefore xϵ(8,∞) ..(i)
x+4≠0 therefore x≠−4 ...(ii)
And (8−x)(−x−3)>0
8>x andx+3<0
x<−3 ...(iii)
Therefore from i ii and ii
xϵ(−4,−3)∪(8,∞)