Find the square of :
(i) x+3y
(ii) 2x−5y
(iii) a+15a
(iv) 2a−1a
(v) x−2y+1
(vi) 3a−2b−5c
(vii) 2x+1x+1
(viii) 5−x+2x
(ix) 2x−3y+z
(x) x+1x−1
(i) (x+3y)2=(x)2+(3y)2+2×x×3y
=x2+9y2+6xy.
(ii) (2x−5y)2=(2x)2+(5y)2−2×2x×5y
=4x2+25y2−20xy.
(iii) (a+15a)2=(a)2+(15a)2+2×a×15a
=a2+125a2+25.
(iv) (2a−1a)2=(2a)2+(1a)2−2×2a×1a
=4a2+1a2−4.
(v) (x−2y+1)2=(x)2+(−2y)2+(1)2+2×x×−2y+2×(−2y)×1+2×1×x
=x2+4y2+1−4xy−4y+2x.
(vi) (3a−2b−5c)2=(3a)2+(−2b)2+(−5c)2+2×3a×−2b+2×(−2b)(−5c)+2×−5c×3a
=9a2+4b2+25c2−12ab+20bc−30ca.
(vii) (2x+1x+1)=(2x)2+(1x)2+(1)2+2×2x×1x+2×1x×1+2×1×2x
=4x2+1x2+1+4+2x+4x
=4x2+1x2+5+2x+4x.
(viii) (5−x+2x)2=(5)2+(−x)2+(2x)2+2×5+×(−x)+2(−x)×2x+2×2x×5
=25+x2+4x2−10x−4+20x
=21+x2+4x2−10x+20x.
(ix) (2x−3y+z)2=(2x)2+(−3y)2+(z)2+2×2x×−3y+2(−3y)×z+2×z×2x
=4x2+9y2+z2−12xy−6yz+4zx.
(x) (x+1x−1)2=(x)2+(1x)2+(−1)2+2×x×1x+2×1x×(−1)+2(−1)×x
=x2+1x2+1+2−2x−2x
=x2+1x2+3−2x−2x.