wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the square root of the following complex numbers :

(i) -5 + 12 i

(ii) -7 - 24i

(iii) 1 - i

(iv) - 8 - 6i

(v) 8 - 15i

(vi) -11 - 64 1

(vii) 1 + 4 3

(viii) 4i

(ix) - i

Open in App
Solution

(i) 5+12iLet z=5+12i |z|=(5)2+122=25+144=169=13 5+12i=±{13+(5)2+i13(5)2}=±{82+i182} ( y>0)=± {2+3i}

(ii) 724iLet z=724ithen |z|=(7)2+(24)2=49+576=625=25 724i=±{2572i25+72} ( y<0)=±(2+12i212)

(iii) 1iLet z=1ithen |z|=12+(1)2=1+1=2 1i=±(2+12i212) ( y<0)=±(2+12i212)

(iv) 86iLet z=86ithen |z|=(8)2+(6)2=64+36=100 86i=±{1082i10+82} ( y<0)=±{22i182}=±{1i9}=±{13i}

(v) 815iLet z=815ithen |z|=(8)2+(15)2=64+225=289=17 85i=±{17+82i1782} ( y<0)=±{252i92}=±{52i32}=±12{53i}

(vi) 11641Let z=11641 z=1160i ( 1=i)Then |z|=(11)2+(60)2=121+3600=3721=61 1160i=±{61112i61+112} ( y<0)=±{502i722}=±{25i36}=±{56i}

(vii) 1+43Let z=1+43=1+43×1 ( 3=3×1) z=1+43i |z|=(1)2+(43)2=1+48=49=7Hence 1+43=±{7+12+i712} ( y>0)=±{82+i62}=±{4+i3}=±{2+3i}

(viii) 4iLet z=4ithen |z|=4|i|=4|i| ( |z1z2|=|z1|×|z2|)=4 ( |i|=1) 4i=±{4+02+i402} ( y>0)={2+i2}=±2(1+i)

(ix) iLet z=ithen |z|=|i|=|1|×|i|=1×i ( |z1z2|=|z1|×|z2|)=1 ( |i|=1) i=±{1+021102}=±(12i2)=±12(1i)


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Square Root of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon