Find the square root of the following complex numbers :
(i) -5 + 12 i
(ii) -7 - 24i
(iii) 1 - i
(iv) - 8 - 6i
(v) 8 - 15i
(vi) -11 - 64 √−1
(vii) 1 + 4 √−3
(viii) 4i
(ix) - i
(i) −5+12iLet z=−5+12i⇒ |z|=√(−5)2+122=√25+144=√169=13∴ √−5+12i=±{√13+(−5)2+i√13−(−5)2}=±{√82+i√182} (∵ y>0)=± {2+3i}
(ii) −7−24iLet z=−7−24ithen |z|=√(−7)2+(−24)2=√49+576=√625=25∴ √−7−24i=±{√25−72−i√25+72} (∵ y<0)=±(√√2+12−i√√2−12)
(iii) 1−iLet z=1−ithen |z|=√12+(−1)2=√1+1=√2∴ √1−i=±(√√2+12−i√√2−12) (∵ y<0)=±(√√2+12−i√√2−12)
(iv) −8−6iLet z=−8−6ithen |z|=√(−8)2+(−6)2=√64+36=√100∴ √−8−6i=±{√10−82−i√10+82} (∵ y<0)=±{√22−i√182}=±{√1−i√9}=±{1−3i}
(v) 8−15iLet z=8−15ithen |z|=√(8)2+(−15)2=√64+225=√289=17∴ √8−5i=±{√17+82−i√17−82} (∵ y<0)=±{√252−i√92}=±{5√2−i3√2}=±1√2{5−3i}
(vi) −11−64√−1Let z=−11−64√−1⇒ z=−11−60i (∵ √−1=i)Then |z|=√(−11)2+(−60)2=√121+3600=√3721=61∴ √−11−60i=±{√61−112−i√61+112} (∵ y<0)=±{√502−i√722}=±{√25−i√36}=±{5−6i}
(vii) 1+4√−3Let z=1+4√−3=1+4√3×√−1 (∵ √−3=√3×√−1)⇒ z=1+4√3i∴ |z|=√(1)2+(4√3)2=√1+48=√49=7Hence √1+4√−3=±{√7+12+i√7−12} (∵ y>0)=±{√82+i√62}=±{√4+i√3}=±{2+√3i}
(viii) 4iLet z=4ithen |z|=4|i|=4|i| (∵ |z1z2|=|z1|×|z2|)=4 (∵ |i|=1)∴ √4i=±{√4+02+i√4−02} (∵ y>0)={√2+i√2}=±√2(1+i)
(ix) −iLet z=−ithen |z|=|−i|=|−1|×|i|=1×i (∵ |z1z2|=|z1|×|z2|)=1 (∵ |i|=1)∴ √−i=±{√1+02−1√1−02}=±(1√2−i√2)=±1√2(1−i)