Let √−5+12i=x+iy
⇒(√−5+12i)2=(x+iy)2
{squaring both sides}
⇒−5+12i=x2+i2y2+2ixy
⇒−5+12i=x2−y2+2ixy
Equating the real and imaginary parts
⇒x2−y2=−5…(1)
And 2𝑥𝑦=12
⇒xy=6
⇒y=6x…(2)
Put value of 𝑦 in equation (1)
∴x2−(6x)2=−5
⇒x2−36x2=−5
⇒x2−36x2=−5
⇒x4+5x2−36=0
⇒x4+9x2−4x2−36=0
⇒(x2+9)(x2−4)=0
⇒x2−4=0
⇒x2=4
⇒x=±2
From equation (2)
y=6x
If x=2⇒y=3
x=−2⇒y=−3
∴x+iy=2+3i,−2−3i
⇒x+iy=±(2+3i)
Therefore, square root of −5+12i is equal to ±(2+3i)