Let √−7−24i=x+iy
⇒√(−7−24i)2=(x+iy)2
{squaring both sides}
⇒−7−24i=x2+i2y2+2ixy
⇒−7−24i=x2−y2+2ixy
Equating the real and imaginary parts
∴x2−y2=−7…(1)
And 2xy=−24
⇒xy=−24
⇒y=−12x…(2)
Put value of 𝑦 in equation (1)
∴x2−(−12x)2=−7
⇒x4+7x2−144=0
⇒x4+16x2−9x2−144=0
⇒(x2+16)(x2−9)=0
⇒x2−9=0
⇒x=±3
From equation (2)
y=−12x
Ifx=3⇒y=−4
x=−3⇒y=4
∴x+iy=3−4i,−3+4i
⇒x+iy=±(3−4i)
Therefore, square root of −7−24i is equal to ±(3−4i)