4+25x2−12x−24x3+16x4 written in order as
16x4−24x3+25x2−12x+4
If this is a square of a simpler polynomial, then it must be expressible in one of the two forms.
(4x2+ax−2)2 or (4x2+ax+2)2
So we have one of the following:
Case1:(4x2+ax−2)2=16x4+8ax3+(a2−8)x2−4ax+4 on expanding
Again Case2:(4x2+ax+2)2=16x4+8ax3+(a2+8)x2+4ax+4 on expanding
Equating the coefficeints in each case
16x4−24x3+25x2−12x+4=16x4+8ax3+(a2±8)x2±4ax+4
we get 8a=−24⇒a=−248=−3
and ±4a=−12⇒a=±3
So,16x4−24x3+25x2−12x+4=(4x2−3x+2)2
∴√16x4−24x3+25x2−12x+4=4x2−3x+2