The correct option is
B x2−x+1To find the square root of the given polynomial x4−2x3+3x2−2x+1, we must equate it to the general form of equation that is (ax2+bx+c) as shown below:
√x4−2x3+3x2−2x+1=ax2+bx+c⇒(√x4−2x3+3x2−2x+1)2=(ax2+bx+c)2⇒x4−2x3+3x2−2x+1=(ax2+bx+c)2⇒x4−2x3+3x2−2x+1=(ax2)2+(bx)2+(c)2+(2×ax2×bx)+(2×bx×c)+(2×c×ax2)(∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca)⇒x4−2x3+3x2−2x+1=a2x4+b2x2+c2+2abx3+2bcx+2acx2
Now, comparing the coefficients, we get:
a2=1,b2+2ac=3,c2=1,2ab=−2,2bc=−2
a2=1⇒a=1
c2=1⇒c=1
2ab=−2⇒2×1×b=−2⇒2b=−2⇒b=−1
Therefore, a=1,b=−1,c=1 and substituting the values in the equation (ax2+bx+c), we get x2−x+1.
Hence, the square root of x4−2x3+3x2−2x+1 is ∣∣(x2−x+1)∣∣.