The correct option is
A |x2−3x+5|.To find the square root of the given polynomial x4−6x3+19x2−30x+25, we must equate it to the general form of equation that is (ax2+bx+c) as shown below:
√x4−6x3+19x2−30x+25=ax2+bx+c⇒(√x4−6x3+19x2−30x+25)2=(ax2+bx+c)2⇒x4−6x3+19x2−30x+25=(ax2+bx+c)2⇒x4−6x3+19x2−30x+25=(ax2)2+(bx)2+(c)2+(2×ax2×bx)+(2×bx×c)+(2×c×ax2)(∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca)⇒x4−6x3+19x2−30x+25=a2x4+b2x2+c2+2abx3+2bcx+2acx2
Now, comparing the coefficients, we get:
a2=1,b2+2ac=19,c2=25,2ab=−6,2bc=−30
a2=1⇒a=1
c2=25⇒c=5
2ab=−6⇒2×1×b=−6⇒2b=−6⇒b=−3
Therefore, a=1,b=−3,c=5 and substituting the values in the equation (ax2+bx+c), we get x2−3x+5.
Hence, the square root of x4−6x3+19x2−30x+25 is ∣∣(x2−3x+5)∣∣.