The correct option is A √5+12i=±(3+2i).
Let √5+12i=x+iy.
Then, 5+12i=(x+iy)2
or 5+12i=(x2−y2)+2ixy
or x2−y2=5 (1)
and
2xy=12 (2)
Now,
(x2+y2)2=(x2−y2)2+4x2y2
or (x2+y2)2=52+122=169
or x2+y2=13(∴x2+y2>0) (3)
On solving (1) and (3), we get
x2=9 and y2=4⟹x=±3 and y=±2
From (2), 2xy is positive. So, x and y are of the same sign. Hence,
x=3 and y=2 or x=−3 and y=−2
Hence, √5+12i=±(3+2i).
Ans: A