Find the squares of the following numbers
(i) 425 (ii) 575
(iii) 405 (iv) 205
(v) 95 (vi) 745
(vii) 512 (viii) 995
(i) (425)2
Here n = 42
∴n(n+1)=42(42+1)42×43=1806
∴(425)2=180625
(ii) (575)2
Here n = 57
∴n(n+1)=57(57+1)57×58=3306
∴(575)2=330625
(iii) (405)2
Here n = 40
∴n(n+1)=40(40+1)40×41=1640
∴(405)2=164025
(iv) (205)2
Here n = 20
∴n(n+1)=20(20+1)20×21=420
∴(205)2=42025
(v) (95)2
Here n = 9
∴n(n+1)=9(9+1)=9×10=90
∴(95)2=9025
(vi) (745)2
Here n = 74
∴n(n+1)=74(74+1)=74×75=5550
∴(745)2=555025
(vii) (512)2
Here a= 1, b= 2
∴(5ab)2=(250+ab)×1000+(ab)2
∴(512)2=(250+12)×1000+(12)2
=262×1000+144
=262000+144=262144
(viii) (995)2
Here n =99
∴n(n+1)=99(99+1)=99×100=9900
∴(995)2=990025