wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

Find the squares of the following numbers using the identity (a − b)2 = a2 − 2ab + b2:
(i) 395
(ii) 995
(iii) 495
(iv) 498
(v) 99
(vi) 999
(vii) 599

Open in App
Solution

(i) Decomposing: 395 = 400 − 5
Here, a = 400 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:

3952 = (400 5)2 = 4002 2(400)(5) + 52 = 160000 4000 + 25 = 156025

(ii) Decomposing: 995 = 1000 − 5
Here, a = 1000 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:

9952 = (1000 5)2 = 10002 2(1000)(5) + 52 = 1000000 10000 + 25 = 990025

(iii) Decomposing: 495 = 500 − 5
Here, a = 500 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:

4952 = (500 5)2 = 5002 2(500)(5) + 52 = 250000 5000 + 25 = 245025

(iv) Decomposing: 498 = 500 − 2
Here, a = 500 and b = 2
Using the identity (a − b)2 = a2 − 2ab + b2:

4982 = (500 2)2 = 5002 2(500)(2) + 22 = 250000 2000 + 4 = 248004

(v) Decomposing: 99 = 100 − 1
Here, a = 100 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:

992 = (100 1)2 = 1002 2(100)(1) + 12 = 10000 200 + 1 = 9801

(vi) Decomposing: 999 = 1000 - 1
Here, a = 1000 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:

9992 = (1000 1)2 = 10002 2(1000)(1) + 12 = 1000000 2000 + 1 = 998001

(vii) Decomposing: 599 = 600 − 1
Here, a = 600 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:

5992 = (600 1)2 = 6002 2(600)(1) + 12 = 360000 1200 + 1 = 358801

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
x^2 - y^2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon