Find the standard deviation for the following data:
xi38131823fi610141010
We have
Mean, ¯x=∑fixi∑fi=(18+80+182+180+230)50=69050=13.8
This value being in decimal form, the calculation will become tedious.
So, we use the formula, σ=1N.√N.∑fix2i−(∑fi)2
Now, we prepare the table given below:
xififixix2ifix2i36189548108064640131418216923661810180324324023102305295290 50690 11590
∴ N=∑fi=50, ∑fixi=690 and ∑fix2i=11590
∴ standard deviation, σ=1N.{√N.∑fix2i−(∑fixi)2}
⇒ σ=150.√50×11590−(690)2=150×√579500−(690)2
=150√579500−476100=150×√103400=321.550=6.43
Hence, σ=6.43