131+13+231+3+13+23+331+3+5+…to n terms
Tr=13+23+33…r31+3+5+(2r−1)=[r(r+1)2]2r2
∴T4=(r+1)24=r2+2r+14
Sn=∑Tr=14∑(r2+2r+1)
∴Sn=14[∑n2+2∑n+∑1]
∴Sn=14[n(n+1)(2n+1)6+2n(n+1)2+n]
∴Sn=14[n(2n+1)(n+1)6+n2+n+n]
=14[n(n+1)(2n+1)+6n2+12n6]
=14[(n2+n)(2n+1)+6n2+12n6]
=14[2n3+n2+2n2+n+6n2+12n6]
=14[2n3+9n2+13n6]
∴Sn=n(2n2+9n+13)24