S=14+24+34+44+...+n4
Using binomial theorem ,
(x+1)5=x5+5x4+10x3+10x2+5x+1
Let x=1 then ,
(1+1)5=15+5⋅14+10⋅13+10⋅12+5⋅1+1
When x=2
(2+1)5=25+5⋅24+10⋅23+10⋅22+5⋅2+1
.
.
.
When x=n
(n+1)5=n5+5⋅n4+10⋅n3+10⋅n2+5⋅n+1
Adding all the term we get ,
25+35+45+55+...+(n+1)5=(15+25+35+45+55+...+n5)+5(14+24+...+n4)+10(13+23+...+n3)
+10(12+22+32+...+n2)+5(1+2+3+4+...+n)+(1+1+1+...+1)
(n+1)5−1=5S+10(n(n+1)2)2+10(n(n+1)(2n+1)6)+5(n(n+1)2)+n
As , sum of square of n natural number will be(n(n+1)(2n+1)6)
Sum of cube of n natural number will be (n(n+1)2)2
sum of n natural number will be (n(n+1)2)
5S=−(n+1)5+1+10(n(n+1)2)2+10(n(n+1)(2n+1)6)+5(n(n+1)2)+n
5S=−(n5+5n4+10n3+10n2+5n+1)+1+52(n4+2n3+n2)+53(2n3+3n2+n)+52(n2+n)+n
5S=6n5+15n4+10n3−n6
S=6n5+15n4+10n3−n30
S=(n(6n4+15n3+10n2−1)30)
S=n30(n+1)(2n+1)(3n2+3n−1)