wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of 14+24+34+44+ to n terms.

Open in App
Solution

S=14+24+34+44+...+n4

Using binomial theorem ,
(x+1)5=x5+5x4+10x3+10x2+5x+1

Let x=1 then ,
(1+1)5=15+514+1013+1012+51+1

When x=2
(2+1)5=25+524+1023+1022+52+1

.
.
.
When x=n
(n+1)5=n5+5n4+10n3+10n2+5n+1


Adding all the term we get ,

25+35+45+55+...+(n+1)5=(15+25+35+45+55+...+n5)+5(14+24+...+n4)+10(13+23+...+n3)
+10(12+22+32+...+n2)+5(1+2+3+4+...+n)+(1+1+1+...+1)

(n+1)51=5S+10(n(n+1)2)2+10(n(n+1)(2n+1)6)+5(n(n+1)2)+n


As , sum of square of n natural number will be(n(n+1)(2n+1)6)


Sum of cube of n natural number will be (n(n+1)2)2


sum of n natural number will be (n(n+1)2)

5S=(n+1)5+1+10(n(n+1)2)2+10(n(n+1)(2n+1)6)+5(n(n+1)2)+n


5S=(n5+5n4+10n3+10n2+5n+1)+1+52(n4+2n3+n2)+53(2n3+3n2+n)+52(n2+n)+n

5S=6n5+15n4+10n3n6

S=6n5+15n4+10n3n30

S=(n(6n4+15n3+10n21)30)

S=n30(n+1)(2n+1)(3n2+3n1)




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon