Find the sum of all natural numbers between 200 and 400 which are divisible by 7.
The numbers lying between 200 and 400, which are divisible by 7, are
203, 210, 217, … 399
∴First term, a = 203
Last term, l = 399
Common difference, d = 7
Let the number of terms of the A.P. be n.
∴ an=a+(n−1)d = 399
⇒ 399 = 203 + (n –1) 7
⇒ 7 (n –1) = 196
⇒ n –1 = 28
⇒ n = 29
Sn=n2[a+L]
S29=292[203+399]
=292×602=8729
Thus, the required sum is 8729.