Find the sum of all positive integers, from 5 to 1555 inclusive, that are divisible by 5
A
242489
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
242580
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
242420
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
252420
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 242580
The first few terms of a sequence of positive integers divisible by 5 is given by
5,10,15,...
The above sequence has a first term equal to 5 and a common difference d=5. We need to know the rank of the term 1555. We use the formula for the nth term as follows
1555=a1+(n−1)d
Substitute a1 and d by their values
1555=5+5(n−1)
Solve for n to obtain
n=311
We now know that 1555 is the 311th term, we can use the formula for the sum as follows