2log2log2x+log12(log2(2√2x))=1
Domain: x>1
⇒2log2log2x−log2log2(2√2x)=1[∵log1/ab=−logab]
⇒log2((log2x)2log22√2x)=1[∵loga−logb=logab]
⇒(log2x)2=2log22√2x
⇒(log2x)2=2log22√2x
⇒(log2x)2=log2(8x2)=3+2log2x[∵log(ab)=loga+logb&logaa=1]
⇒y2−2y−3=0, where log2x=y
⇒y=3;y=−1
⇒x=8;x=12
Due to domain constraint, only x=8 satisfies the equation.