wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of all solutions of cosxcos(x+π3)cos(π3x)=14,x[0,6π].=mπ.Find m

Open in App
Solution

Given-
cosxcos(x+π3)cos(π3x)=14
can be written as
4cosxcos(x+π3)cos(π3x)=1
2cosx[2cos(x+π3)cos(π3x)]=1
2cosAcosB=cos(A+B)+cos(AB)
2cosx[cos(x+π3+π3x)+cos(x+π3π3+x)]=1
2cosx[cos(2π3)+cos2x]=1
2cosx[cos(ππ3)+cos2x]=1
cosπ3=1/2,cos2θ=2cos2θ1
2cosx[12+2cos2x1]=1
4cos3x3cosx=1
cos3θ=4cos3θ3cosθ
cos3x=1=cosθ
i.e. 3x=2nπ,nI
x=2nπ3,nI
x[0,6π]
x=[0,2π3,4π3,2π,8π3,10π3,4π,14π3,16π3,6π]
and their sum =30π=mπ
m=30

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon