Given-
cosxcos(x+π3)cos(π3−x)=14
can be written as
4cosxcos(x+π3)cos(π3−x)=1
⇒2cosx[2cos(x+π3)cos(π3−x)]=1
∵2cosAcosB=cos(A+B)+cos(A−B)
⇒2cosx[cos(x+π3+π3−x)+cos(x+π3−π3+x)]=1
⇒2cosx[cos(2π3)+cos2x]=1
⇒2cosx[cos(π−π3)+cos2x]=1
∵cosπ3=1/2,cos2θ=2cos2θ−1
⇒2cosx[−12+2cos2x−1]=1
⇒4cos3x−3cosx=1
∵cos3θ=4cos3θ−3cosθ
⇒cos3x=1=cosθ
i.e. 3x=2nπ,n∈I
⇒x=2nπ3,n∈I
x∈[0,6π]
⇒x=[0,2π3,4π3,2π,8π3,10π3,4π,14π3,16π3,6π]
and their sum =30π=mπ
⇒m=30