wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of all the multiples of 3 digits numbers which are divisible by (a)6,(b)9

Open in App
Solution

(a) 3 digit numbers divisible by 6:

102,108...996

Here a=102,d=6

tn=a+(n1)d

996=102+(n1)6

(n1)6=894

(n1)6=894

n=150

Sn=n2(2a+(n1)d)

Sn=1502(2×102+149×6)

Sn=82350



(b) 3 digit numbers divisible by 9:

108,117...999

Here a=108,d=9

tn=a+(n1)d

999=108+(n1)9

(n1)9=891

n=100

Sn=n2(2a+(n1)d)

Sn=1002(2×108+99×9)

Sn=55350

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon