1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of n Terms
Find the sum ...
Question
Find the sum of all the multiples of
3
digits numbers which are divisible by
(
a
)
6
,
(
b
)
9
Open in App
Solution
(
a
)
3
digit numbers divisible by
6
:
⇒
102
,
108...996
Here
a
=
102
,
d
=
6
⇒
t
n
=
a
+
(
n
−
1
)
d
⇒
996
=
102
+
(
n
−
1
)
6
⇒
(
n
−
1
)
6
=
894
⇒
(
n
−
1
)
6
=
894
⇒
n
=
150
⇒
S
n
=
n
2
(
2
a
+
(
n
−
1
)
d
)
⇒
S
n
=
150
2
(
2
×
102
+
149
×
6
)
⇒
S
n
=
82350
(
b
)
3
digit numbers divisible by
9
:
⇒
108
,
117...999
Here
a
=
108
,
d
=
9
⇒
t
n
=
a
+
(
n
−
1
)
d
⇒
999
=
108
+
(
n
−
1
)
9
⇒
(
n
−
1
)
9
=
891
⇒
n
=
100
⇒
S
n
=
n
2
(
2
a
+
(
n
−
1
)
d
)
⇒
S
n
=
100
2
(
2
×
108
+
99
×
9
)
⇒
S
n
=
55350
Suggest Corrections
0
Similar questions
Q.
Find the sum of
(i) the first 15 multiples of 8
(ii) the first 40 positive integers divisible by (a) 3 (b) 5 (c) 6.
(iii) all 3 − digit natural numbers which are divisible by 13.
(iv) all 3 − digit natural numbers, which are multiples of 11.
(v) all 2 − digit natural numbers divisible by 4.
(vi) first 8 multiples of 3.