Find the sum of all the values of x satisfying log10(x+9)+2log10√2x−1=1.
Open in App
Solution
log10(x+9)+2log10√2x−1=1 is valid when x+9>0,2x−1>0 ⇒x>12 Rewriting given equation as log10(x+9)(2x−1)=1,[∵mlogx=logxm&loga+logb=log(ab)] ⇒(x+9)(2x−1)=10 ⇒2x2+17x−19=0 ⇒x=−9.5,1 Since, x>12 Therefore, x=1 and sum of roots is 1. Ans: 1