(1+x)n=nC0+nC1x+nC2x2+...+nC0xn ....(1)
(1−x)n=nC0−nC1x+nC2x2−...+nC0xn ....(2)
⇒(1+x)n−(1−x)n=nC0+nC1x+nC2x2+...+nC0xn−nC0+nC1x−nC2x2+...+nC0xn
=2(nC1x+nC3x3+....+xn)
Given: n=50 and put x=1
⇒(1+1)50−(1−1)50=250
⇒250=2(nC1x+nC3x3+....+xn)
∴Sum of odd powers of x in the expansion is =nC1x+nC3x3+....+xn=250−1=249