Let θ=π7,∴7θ=π
∴4θ+3θ=π
⇒tan4θ=tan(π−30)
⇒tan4θ=−tan3θ
⇒4tanθ−4tan3θ1−6tan2θ+tan4θ=−3tanθ−tan3θ1−3tan2θ
⇒4z−4z31−6z2+z4=−3z−z31−3z2 [where tanθ=z]
⇒(4−4z2)(1−3z2)=−(3−z2)(1−6z2+z4)
⇒z6−21z4+35z2−7=0----------------------------------1
This is a cubic equation in z2 i.e. in tan2θ.
The roots of this equation are therefore tan2π7,tan22π7,tan23π7.
From Equation 1, sum of roots=−(−21)1=21
⇒tan2π7+tan22π7+tan23π7=21------------------------2
or, 7y6−35y4+21y2−1=0--------------3
This is a cubic equation in y2 i.e. in cot2θ.
The roots of this equation are cot2π7,cot22π7,cot23π7.
From equation 3, sum of roots of Equation 3=357
⇒cot2π7+cot22π7+cot23π7=5------------------------3
$\therefore By multiplying equation 2 & 4, we get
(tan2π7+tan22π7+tan23π7)(cot2π7+cot22π7+cot23π7)
=21×5=105