Find the sum of each of the following APs:
(i) 2, 7, 12, 17,... to 19 terms.
(ii) 9, 7, 5, 3, ... to 14 terms.
(iii) -37, -33, -29, ... to 12 terms.
(iv) 115,112,110,...to11
(v) 0.6, 1.7, 2.8, ... to 100 terms.
Sum of n terms Sn= n2 (2a+(n−1)d)
(i)
a = 2 , d = 7 - 2 = 5 and n = 19
S19= 192 (2×2+(19−1)5)
S19= 192 (4+90)
S19= 192 × 94
S19 = 893
(ii)
9, 7, 5, 3, ... to 14 terms.
a=9, d=-2, n=14
S14 = 142{2 × 9+(14-1)×-2}
S14 = 7{18-26}
S14 = 7×-8
S14 = -56
(iii)
a = -37 , d = 4 and n = 12
S12 = 122{ -37×2 + (12-1)×4}
S12 = 6{ -74 + 44}
S12 = -180
(iv)
a = 115 , d = 112 - 115 = 160
S11 = 112 { 215 + 10 × 160 }
S11 = 112 { 1860 }
S11 = 3320
(v)
a = 0.6 , d = 1.1 and n = 100
S100 = 1002{ 2 × 0.6 + (100-1)×1.1 }
S100 = 50 × { 1.2 + 108.9}
S100 = 50 × 110.1
S100 = 5505