Given: a2=8 and a4=14 and n=21
We know that,
a2=a+d=8...(i)
and a4=a+3d=14...(ii)
Solving the linear equations (i) and (ii), we get
a+d−a−3d=8−14
⇒−2d=−6
⇒d=3
Putting the value of d in equation.(i), we get
a+3=8
⇒a=8−3=5
Now, we have to find the sum of the first 21 terms.
Sn=n2[2a+(n−1)d]
⇒S21=212[2×5+(21−1)(3)]
⇒S21=212[10+20×(3)]
⇒S21=21[5+10×(3)]
⇒S21=21[35]
⇒S21=735