Given G.P : 1+23+49+⋯
Here, first term a=1
and common ratio, r=231=23
Step 1: Finding sum of n terms of G.P
We know that, sum of n terms of G.P.
Sn=a(1−rn)1−r
⇒Sn=1(1−(23)n)1−23
⇒Sn=1−(23)n13
∴Sn=3[1−(23)n]⋯(i)
Step 2: Finding sum of first 5 terms.
Putting n=5 in equation (i) we get
S5=3[1−(23)5]
⇒S5=3[1−(2535)]
⇒S5=3[1−(32243)]
⇒S5=3[243−32243]
∴S5=21181