The correct option is B π4
Given, cot−12(1)2+cot22(2)2+cot−12(3)2+cot22(4)2+...
∴Tn=cot−1(2n2)=tan−112n2
=tan−1[(2n+1)−(2n−1)1+(2n+1)(2n−1)]=tan−1(2n+1)−tan−1(2n−1)
∴T1=tan−13−tan−11T2=tan−15−tan−13T3=tan−17−tan−15
∴Sn=tan−1(2n+1)−tan−11
∴limn→∞Sn=tan−1∞−π4=π2−π4=π4