4x2+12xy+10y2−4y+3=0
Let us differentiate w.r.t ′x′
⇒8x+12y+20ydydx+12xdydx−4dydx=0
⇒2x+3y+5ydydx+3xdydx.dydx=0
⇒(3x+5y−1)dydx=−(2x+3y)⇒dydx=−(2x−3y)(3x+5y−1)
To find critical points, dydx=0
⇒−(2x−3y)(3x+5y−1)=02x+3y=0
The line 2x+3y=0 will pass through critical point.
x=−32y. We will not substitute this value of x in the curve & solve the equation in terms of y.
⇒4(−3y2)2+12(−3y2)y+10y2−4y+3=0⇒9y2−18y2+10y2−4y+3=0⇒y2−4y+3=0⇒(y−1)(y−3)=0
Clearly, min value of y=1
max value of y=3
∴ Sum of min & max values =1+3=4