wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the sum of n terms of Series sinαsin(α+β)+sin(α+2β)sin(α+3β)+......

Open in App
Solution

Let S be the sum of series
S=sinαsin(α+β)+sin(α+2β)sin(α+3β)+....
Multiplying with 2sin(β2) on both sides
2sin(β2)S=2sin(β2)sinα2sin(β2)sin(α+β)+2sin(β2)sin(α+2β)....2sin(β2)S=cos(α+β2)cos(αβ2)+cos(α+3β2)cos(α+β2)+cos(α+5β2)cos(α+3β2)+...+cos(α+(n1)β+β2)cos(α+(n1)ββ2)2sin(β2)S=cos(α+(n1)β+β2)cos(αβ2)2sin(β2)S=2sin(α+(n1)β2)sin(nβ2)S=sin(α+(n1)β2)sin(nβ2)sin(β2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon