Find the sum of n terms of the following series:
(4−1n)+(4−2n)+(4−3n)+⋯
We know that :
1 + 2 +3 + 4 +5 +6 + ...........+ n = n(n+1)2
and
1 + 1+ 1 + 1 + 1 + .............+ n = n
Here,
(4−1n)+(4−2n)+(4−3n)+⋯
= (4 + 4 + 4 + 4 + 4 + ......... upto n terms) + (-1/n - 2/n - 3/n - ..........upto n terms)
= 4 ( 1+1+1+1.......... upto n terms) - 1/n (1 + 2 + 3 +4 .........upto n terms)
= 4 n - 1n × n(n+1)2
= 4n - (n+1)2
= 8n−(n+1)2
= 8n−n+12
= 7n+12