The correct option is B 3n4+n(n+1)+112(4n−1)
S=3+8+22+72+266+1036+... ...(1)
S=3+8+22+72+266+... ...(2)
From (1) - (2)
0=3+5+14+50+194+770+...Tn
⇒Tn=3+5+14+50+194+770+... ...(3)
Tn=3+5+14+50+194+770+... ...(4)
From (3) - (4)
0=3+2+9+36+144+576+...
tn=3+2+G.P with first term 9, common ratio 4, and number of terms n-2.
⇒tn=5+9((4)n−2−1)4−1⇒tn=2+316(4n)
⇒Tn=3+∑n−1n=13104n
⇒Tn=3+2(n−1)+316(4)(4n−1−1)4−1
⇒Tn=34+2n+4(n−2)
Sn=∑Tn=3n4+n(n+1)+112(4n−1)