Find the sum of n terms of the series (a+b)+(a2+ab+b2)+(a3+a2b+ab2+b3)+..... where a≠1,b≠1anda≠b
A
1(a−b){a2(1−an)1−a}−1(a−b){b2(1−bn)1−b}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1(a−b){a2(an−1)a−1}−1(a−b){b2(bn−1)b−1}`
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(a−1){a2(1−an)1−b}+1(a−1){b2(1−bn)1−b}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1(a−b){a2(1−an)1−a}−1(a−b){b2(1−bn)1−b} Sn=(a+b)+(a2+ab+b2)+(a3+a2b+ab2+b3)+.... ⇒(a−b)Sn=(a2−b2)+(a3−b3)+(a4−b4)+... ⇒(a−b)Sn=(a2+a3+a4+...)−(b2+b3+b4+...) ⇒(a−b)Sn=a2(1−an)1−a−b2(1−bn)1−b ∴Sn=a2(1−an)(1−a)(a−b)−b2(1−bn)(1−b)(a−b)